Borrowing Strength with Nonexchangeable Priors over Subpopulations
نویسندگان
چکیده
منابع مشابه
Borrowing strength with nonexchangeable priors over subpopulations.
We introduce a nonparametric Bayesian model for a phase II clinical trial with patients presenting different subtypes of the disease under study. The objective is to estimate the success probability of an experimental therapy for each subtype. We consider the case when small sample sizes require extensive borrowing of information across subtypes, but the subtypes are not a priori exchangeable. ...
متن کاملCombining Nonexchangeable Functional or Survival Data Sources in Oncology Using Generalized Mixture Commensurate Priors.
Conventional approaches to statistical inference preclude structures that facilitate incorporation of supplemental information acquired from similar circumstances. For example, the analysis of data obtained using perfusion computed tomography to characterize functional imaging biomarkers in cancerous regions of the liver can benefit from partially informative data collected concurrently in non-...
متن کاملTransformational Priors Over Grammars
This paper proposes a novel class of PCFG parameterizations that support linguistically reasonable priors over PCFGs. To estimate the parameters is to discover a notion of relatedness among context-free rules such that related rules tend to have related probabilities. The prior favors grammars in which the relationships are simple to describe and have few major exceptions. A basic version that ...
متن کاملEstimating human priors on causal strength
Bayesian models of human causal induction rely on assumptions about people’s priors that have not been extensively tested. We empirically estimated human priors on the strength of causal relationships using iterated learning, an experimental method where people make inferences from data generated based on their own responses in previous trials. This method produced a prior on causal strength th...
متن کاملModeling Topical Trends over Continuous Time with Priors
In this paper, we propose a new method for topical trend analysis. We model topical trends by per-topic Beta distributions as in Topics over Time (TOT), proposed as an extension of latent Dirichlet allocation (LDA). However, TOT is likely to overfit to timestamp data in extracting latent topics. Therefore, we apply prior distributions to Beta distributions in TOT. Since Beta distribution has no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2011
ISSN: 0006-341X
DOI: 10.1111/j.1541-0420.2011.01693.x